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Abstract:

The most general quasiparticle propagator in dense quark matter is derived
for equal mass quarks. Specialized to an NJL model this propagator includes
one new condensate, Az, in addition to the usual CFL condensate, A;. The
gap equation is solved in two NJL. models and the dependence of the con-
densates on the mass of the quarks is presented. The results are shown to
differ from those obtained by neglecting Aj, especially for smaller values of
A;. The methods used in this paper can be generalized to the physical case
where only the strange quark is significantly massive.



1 Introduction

The physics of strongly interacting matter at high densities and low temper-
atures has been the subject of much research in recent years. It has long
been known|[1, 2] that at sufficiently high densities a system of quarks should
form a condensate of Cooper pairs which breaks the SUs(3) symmetry and
becomes a color superconductor. The formation of the condensates leads to
gaps in the quasi-particle mass spectrum!. The authors of [1, 2] estimated
that the gaps were of the order of A ~ 1073y where p is the quark chemi-
cal potential. Recently it was shown at realistic values of y in an instanton
induced NJL model that gaps of the order of u could be obtained[3]. This
stimulated a great deal of research in the ensuing years and has resulted in a
proliferation of predicted superconducting ground states. These states may
be realized in the cores of neutron stars and lead to observable effects[4].

It is widely accepted that the color superconducting ground state at
asymptotic densities is the Color Flavor Locked (CFL) state[5]:

(LCY°al) = Ag3 (04,65 — 65 62) + Nes (6,85 + 65 67), (1)

where the Greek indices are color indices, the Latin indices are flavor indices
and the 3 and 6 subscripts refer to anti-triplet or sextet configurations in
color and flavor spaces respectively. At lower densities (u ~ my), it is likely
that the ground state is a superconducting state involving the condensation of
Cooper pairs in the u—d sector only (25C). Between these two limits, two new
phases have recently been predicted: Crystalline Color Superconductivity[6]
and CFL with meson condensation[7]. These predictions, while not neces-
sarily at odds with one another, indicate that the transition region between
the CFL state and the 2S5C state is not completely understood.

Including the strange quark mass in the Nambu-Gorkov gap equation
introduces two sets of complications: 1) massive quarks means that there are
4 new types of Dirac structures allowed for the condensates, and coupling
between the condensates; 2) the fact that the strange quark is different from
the other quarks means that condensates involving the strange quark should
be different from those with zero strangeness.

In order to understand the implications of these two complications it is
useful to separate them and understand them individually before tackling

!The terms gap and condensate are used interchangeably.



the full problem. In a previous paper by this author|[8] the second problem
of non-degenerate quarks was studied in the case where the quarks are all
massless but the strange quark is given a different chemical potential than
the other two quarks. In this paper we concentrate on the first complication
by considering the problem of equal mass quarks.

The results of this paper are exact for the Ny = 2 and for the the 2SC
phase with Ny = 3. The results are an approximation to the Ny = 3 CFL
case. We do not explicitly deal with the color flavor structure because it
cancels out.

The most general quasiparticle propagator is presented for the case of
equal mass quarks. This propagator is then specialized to the NJL model
where it was found that there is only one new condensate, Az in addition to
the CFL condensate, A;.

We solve the gap equation in the simplest NJL model and present results
for the most general set of condensates as a function of the quark mass.
The results are compared with results obtained neglecting the effect of the
new condensate Ajz. It is shown that the inclusion of Aj alters the results
especially for lower values of A;. These results are relevant to the analysis
of [22] where the gap equation is solved ignoring As.

We also do the same analysis in the NJL model which has the color flavor
structure of single gluon exchange. The results in this model are also altered
by the inclusion of Az especially for lower values of A;.

These results show the importance of using the most general form of the
quasiparticle propagator in the solution of the gap equations for massive but
degenerate quarks. The results are most significant for smaller values of the
the CFL condensate.

The NJL analysis is a low energy motivated model. The analysis can be
repeated using perturbation theory in order to compare with a model valid
at higher densities and energies.

The methods used in this paper are a significant new result on their own.
This is because they can be generalized to determine the general quasiparticle
propagator and the general set of gap equations for the physical case where
the up and down quarks are essentially massless but the strange quark is
massive.



2 Basis for the Condensates

The CFL condensate has the Dirac structure 75 and is the only spin zero
condensate in the massless case. The most general set of spin zero conden-
sates is given in Appendix B and includes eight different possible structures.
In an NJL model the structures involving ~y - k automatically vanish leaving
four possible Dirac structures. Later in the paper we will see that, in the
NJL analysis, there is only one new condensate, A3 with the Dirac structure:
Y570-

The analysis could be carried out in a basis of Dirac structures, but the
equations would be very complicated. A crucial step in finding the gen-
eral quasiparticle propagator and gap equations is choosing a basis of Dirac
structures which simplifies the analysis enough to make it tractable.

In the massless case an arbitrary condensate matrix can be decomposed
using a basis of projection operators[15]:

PER) = A(R)Pa(R),  e,h= %1 (2)
which are products of positive and negative energy projectors:

1+e’yof7-/;

A°(k) = 5

e==+1 (3)
and positive and negative helicity projectors:

_ 1+eys707 - k

Py (k) 9

h=+1 (4)

as:
A= > AP ()
e,h,£t1

Similarly all objects, such as the bare quark and the quasiparticle propagator
can be written in this basis. The basis of projection matrices is extremely
useful since it reduces products of these objects to the simplest possible form.
In the case of massive quarks, however, things are more complicated. The

energy projector can be generalized to[15]:

I+e (5707'/2‘"0470)

(k) = 5

e=+1 (6)
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where 8 = |k|/E; and o = m/Ej,.
A set of analagous operators in the massive case given in [15] is:

e (k) = P,A(K)Py(k), eh=+1 c=r,l (7)

where the new operator in the product is the chirality projector

1
P, = ( +2075> c=r,l (8)

which projects onto right and left handed spinors. In what follows I will use
the definition r = 4+ and [ = — in analogy with the other projectors which
will simplify a lot of the formulas below.
These operators are really quasiprojectors with the general product rule:
! ]. /
P& (k)PS5 (k) = eerOce Onm Py (k) — iece'c'(l —e€'chB)opy P5(k)  (9)
The objects are not projectors because chirality and energy projectors do not

commute:

[Pe; A°] = —ec av7s (10)
This basis is complete and the general gap matrix can be written using this
basis[15]:

A= > NP, (11)
e,c,h,£1

but this basis still involves a lot of complications.
We can define a new basis of true projectors and nilpotent operators:

FER) = 50 P(k) = Bafh) A°CK) (12)
G = ¥ (ech-APak) = hy = HFI®)  (13)

that satisfy the following relations:

P(k)Pg (k) = Oewnw PE(K) (14)
S(k)Pg (k) = Geerdpw Q5 (k) (15)
Pe(k)Q5 (k) = 0_colw@Qy°(k) (16)
Q5 (k)Q5i (k) = —a?0_cerbuw By © (17)



P¢(k) is an hermitian operator and (Q%(k))" = —Q; (k).

In the chiral limit (o« — 0,68 — 1) P¢(k) are identical to the massless
projectors and Q% (k) vanish.

Notice that the operators with different helicities are completely decou-
pled.

The multiplication table for each helicity looks like:

P QB Qn
BS (B 0 0 Qn
Py 0 QT Py 0
Qp 0 —o’F Q, 0

This set of eight operators is the set of operators on the space of solutions
of the Dirac equation which gives the most sparse multiplication table. One
would prefer of course, a basis of projection operators as in the massless case.
However, such a set does not exist. Dirac spinors are 4 component complex
vectors and as such live in an R®. One can definitely find eight orthogonal
projectors in this space. However, Dirac spinors must be solutions of the
Dirac equation which places constraints on the components. Therefore you
cannot have 8 orthogonal projectors onto the space of solutions of the Dirac
equation. On the other hand you need 8 operators to form a complete set
with which to contruct all 8 independent Dirac structures.

In the massless case, the left and right handed spinors decoupled so that
each was a two component complex spinor which therefore lives in R*. It is
therefore possible to find a set of 4 orthogonal projectors on this space.

The operators given above have the following represention as 2 x 2 ma-

trices.
10 00
+ _ - _
Ph—<00> Ph_<01> (19)

ai=("0) a=(0%) (20)

This supports the reasoning above that there are only 4 independent projec-
tors since the operators for each handedness operate on a two dimensional
space. This representation will be useful in what follows.



This set of operators is complete as is shown by the following relations:

I = > FBk (21)

e,h=—1,1

Y-k = > hP(k) (22)
e,h=—1,1

ay-k = - Y @k (23)
e,h=—-1,1

ay’y’ = Y hQi(k) (24)
e,h=—1,1

VYy-k = Y e(@k)+BP(k)) (25)
e,h=—1,1

o= Y eh(Qi(k)+ BP5(k)) (26)
e,h=—1,1

ay’ = Y e(a®Pi(k) - BQ5(k)) (27)
e,h=—1,1

ar’y-k = = Y eh(a’Pi(k) - BQ5 (k) (28)
e,h=—-1,1

It should be noted that these equations are still valid in the chiral limit
(albeit half of them are trivial).
The gap matrix is decomposed in terms of these operators as:

A= 3 (B&+a?yg) P(k)+ (& — B vf) Qh(k) (29)

e,h=—1,1

At= 3 (B&+a®5) Pi(k) — (& — B ¥5) Que(k) (30)

e,h=—1,1

It should be noted that due to the vanishing of Q% (k) in the chiral limit,
this decomposition of A gives no restriction (other than finiteness) on the
coefficient, (£ — [ 15), in the chiral limit.

All objects that we are concerned with in this analysis can therefore
be constructed using this basis. Their sparse multiplication table simplifies
much of the analysis in the rest of the paper. In the next section we derive
the general quasiparticle propagator using this basis.



3 General Quasiparticle Propagator

The quasiparticle propagator is determined by the equation[15]:

1

G=={[G5] - ATGFA:} (31)

where AT = A A~ = ATy, and Gj is the bare antiparticle propagator:

oy = (g 0y YR+ M
Gy(k) = (ko —m’-M) = (o~ )~ B2 (32)
0 ((/fo — ) — BBy -k + EkOé’YO)
-7 (ko — n)? — E}
_ 0 (ko = 1) + By Xep-—1, € [(@® = 62) P5 (k) — 28 Q;, (k)]
! (ko — p)? — E
If we define:
. -1
Q = [G*(k) ((ko = p)7° =7 -k + M) 1]
= 2 MPE)+BiQL(k) = > (33)
eh=—1,1 h=—1,1
the coefficients are:
2eaiE .
Ay = (o) = (G0 — o T o )’ (34)
€ _ —€,,e e,/ ,—€ 2 € Ek € —€
By = & — &G + (ko — 1) + eEkfh¢h
using the notation:
1/2
E(E,0) = [(Br F 1)* + € + o} v (35)

Using the 2 x 2 matrix representation of Py and ()j given above we find:

Ol= Y

e,h=—1,1

1
det Qh,

(AP (k) — ByQs (k) (36)



where:

det Qh

kg — 2k (BR+ 1 + (6 + (6)7 + o2 () + 2> (47)?) (37)
+ 2BEcko (WiH)? — ()?)

+ [(Br = w)?(Bi + 1) + (Bi + (&) + (Bx — 0)*(&)?

— oA(Be— B+ ) (02— @) + (676 +o*vitvr)'|

and we have used the definition:

Ey, = \/|k]2 + m? (38)

The roots of this quartic equation in k¢ can be found in an appendix(not
yet).
Now we have that:

GH(k) = Q7" ((ko— )n° — -k + M) (39)

The completely general propagator is:

Gtk = Y ale ko — e p+ Ep)) (kg — (w1)5) — ale ko — e p— Ey) (B vf) WP;
eh=—1,1 det Qh
Blale ko —e p— Ep) (kg — (wo);) + ale ko — e p— E)np,© .
) ¢ o
e,h=—1,1 et Qh
where:
(W) = (Be+ep)’+8&°x,° (40)
1
(@) = (Bu+ew’+5 60" (41)
and we have used the definitions:
o = BE& 4’y (42)
Xn = & — By (43)
vE = BE A+t (44)
m = & —Bvp° (45)
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At this point one could diagonalize the propagator but the diagonalization
depends on k3 and E} and is quite complicated. It is not necessary to diag-
onalize the complete propagator for the purposes of this paper.

If we assume that only the v5 condensate contributes, this corresponds to
the relations:

G =EXR=00,=ehél Yp=0 vp=p8 np =& (46)
and it can be shown that:
k‘() + €(Ek — € /L)

Gt = P¢ 47
e,h;Ll kg — (B — e p)* — (€12 n 7
k() + 6(Ek — € /,L)
= Ae ’)/
2 B (Be—epy - @D

which agrees with the quark propagator derived recently [22] in this ansatz.
We will show below that while this ansatz is a good first approximation, the
gap equation will not close under this ansatz and the fully general quark
propagator is the more complex form shown above.

The analysis up until this point generalizes to perturbation theory anal-
ysis. For simplicity we restrict ourselves to NJL analyses in this paper.

For the purposes of this paper where the propagator will be used with an
NJL interaction the roots simplify considerably. With foresight we can set

v o= hla, (48)
g}el = h (€A1 — QA3) (49)

where A; and Az are defined in Appendix B. A, is the usual CFL condensate
and Aj is a new condensate. In this case we find that:

det Oy = det Q_ = (kg — (¢")?) (k§ — (¢)?) (50)
where:

(€5)? = B2+ 2+ A2+ A2/ (2B + 200, Ag)? + 48242 (B2 + A2) (51)

In the massless limit A; = 0 2, @ = 0, E; = |k| and therefore the e*
reduce to the those defined in [15].

2As we shall see later.




In the NJL model the full propagator is;

N B ae(ky—p+eEy)(ki— (wi)s)—elko—p—eEy)3BPAA; _,
@k =2 CHGRICEE i

_Blole ko — e p— Ei) (kg — (w2)$) + (ko — pp— e Ei)(A1 — eAg/a) A

B B “

where:
(W) = (Bx+ep)?+ (AL +eals)(A+eAs/a) (52)
(w2)e = (Bx+ep)?+ (A1+eals)A; (53)

The quasiparticle propagator can now be used in the mean field gap
equation[15]:

All) = —ig” | (5t S TEDR( — G @AWGT@TE  (64)

(2
DY (k — q) is the gluon propagator, I'Z is the interaction vertex, and:
r=crfc—. (55)

In the following sections we will present results for two different types of
four fermion interactions. First we present results for the simplest NJL model
motivated by the effective Lagrangian approach. Second we will present
results for a four fermion interaction which has the color structure of a single
gluon exchange.

The general quasiparticle propagator derived in this section could be used
in a perturbation theory analysis of the gap equation. More importantly, the
methods used above can be generalized to the physical case where the up
and down quarks are essentially massless and the strange quark is massive.

4 Simplest NJL Model

The simplest possible four fermion interaction, motivated by the effective
Lagrangian approach, is to take the interaction vertex to be Fﬁ =1 and:

1
g°DH — 1G0"0an (56)
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Acting on both sides of this equation with the operators s, v5y, and
tracing over the spinor indices one can obtain the gap equations for A; and
Ajz respectively. The color-flavor structure of the gap matrix can almost be
ignored because the propagators do not have any color flavor structure and
therefore the same factor will occur on both sides of the equation. How-
ever, if one is working in the degenerate three flavor case there is a slight
complication to even the zero mass gap equation. We do not want to deal
with this complication in this paper. One could think of this analysis as an
approximate analysis in the three flavor case.

In the two flavor case there is only one color-flavor structure to be con-
cerned about and this analysis is exact. This applies even to the case of the
2S5C Color superconducting phase in the physical 3 flavor case as condensates
involving the third color and flavor will simply decouple from the quantities
that we are calculating.

The coupled gap equations are:

B d* q 2E,pals + Ay (g5 — E} — AT + A3 — %)
A= 816 [ 5 @ — (D@ — ) (58)
_ gy d4q 2B uay + Ag(qf + AT — %) + Ag(B% — o) (EZ — A3)
8y = -8iG [ G @ =)

where terms linear in gy have been dropped since they will cancel out on
integration over ¢y from —oo to co. The dependence of the condensate on
momentum has been dropped since the right hand side of the gap equations
are independent of k.

Acting on (57) with the operators 7, and the identity and taking the
trace leads to vanishing of the right hand side which is consistent with the
assumption that A4 and Ag are zero. Acting with any of the other operators
involving - -k will lead to a term involving - -k which will vanish by symmetry
under the angular integration.

Evaluation of these equations can be facilitated by the analytic contin-
uation ¢y — —igy. The ¢4 integration is then done by contour integration

11



closing the contour in the upper half plane and picking up the poles at et
and 7¢~. The angular integrals can be done trivially giving:

G A A + A1 A3)A + A1 A3)A
A1=p/dqq2<l+_1+(m“ 183)A3 _ (m p+ ArAg) 3)

& e T (= (e (= (e))e
(59)
_ G 2 (As | As m p Aq B m p Ay
b= [ <+ @@ (@ = (e
(®+ADA; (P +AD A
TR ) <<e+>2—<e—>2>e—> (60)

If one assumes Az = 0 the first equation reduces to the gap equation solved
in [22]. The second equation does not vanish exactly under this assumption.
If one takes m = 0 and A3 = 0 the second equation is trivially satisfied and
the first equation becomes the gap equation for massless quarks.

The range of integration for ¢ is not infinite since the NJL model is a
four-fermion interaction model and must have an UV cutoff. The integrals
are simply regularized by the factor:

A4

R(q) = (@ + A2

(61)
with A = 1000 MeV.

The gap equations were solved numerically for 4 = 500 MeV and G =
48 /A? for different values of m. The results are shown in Figures (1) and (2).
Also shown for comparison is the solution for A; where A3 has been ignored.

One can see in Figure (2) that Aj rises almost linearly with m and at
m = 150 MeV is approximately 13% of A; at m = 0. In Figure (1) we can
see that the inclusion of Ajz in the solution of the gap equations strongly
affects the results for A;. A; decreases with increasing m more rapidly if Aj
is not assumed to be zero. At m = 150 MeV A; is 14% less than (Ay),,—p if
Aj3 is not neglected and only 5% less if it is.

12
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Figure 1: Numerical solutions for A; as a function of m for p = 500 MeV
and G = 48/A? in the simplest NJL. model. Shown are solutions neglecting
the effect of A3 and including the effect of Aj.
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The gap equations were solved numerically for ;1 = 500 MeV and G =
64/A2 for different values of m. The results are shown in Figures (3) and (4).
Also shown for comparison is the solution for A; where As has been ignored.

Again Figure (4) shows that Agj rises linearly with m and at m = 150
MeV is approximately 12% of A; at m = 0. In Figure (3) we can see that
again A; decreases with increasing m more rapidly if A3 is not assumed to be
zero. At m =150 MeV A; is ~ 7% less than (Aq),—o if A3z is not neglected
and only ~ 4% less if it is.

One of the reasons for doing the analysis in the simplest NJL model is to
estimate how the inclusion of Az might effect the results of [22]. With this
goal in mind the gap equation has been solved in exactly the same approach
as [22]3. The results for u = 400 MeV are shown in Figures (5) and (6). The
results in this case are very similar to the previous case. Aj increases linearly
reaching 18% of (A1)m—o at m = 150 MeV. A; is down at m = 150 MeV by
~ 8.5% and ~ 5.5% respectively including or neglecting Asj.

Extending this analysis out to quark mass of m = 150 MeV is partly for
illustrative purposes but is also valuable for two other reasons.

First the analysis of [22] shows that in a coupled analysis of the super-
conducting (diquark) condensate and the axial condensate, constituent quark
masses of the order of 100 MeV for the light quarks are possible at pu ~ 400
MeV. For constituent quark masses of this order the results of our analysis
show that the presence of a new condensate, Az which they neglected in their
ansatz will be relevant. Their ansatz was a good first approximation as the
new condensate and it’s effects are not large. However, the effects are not
neglible and the full analysis requires the more general ansatz and the use of
the general quasiparticle propagator.

Second the methods used in this analysis can be extended to the physical
case where the strange quark mass is of the order of 150 MeV. It is instructive
therefore to carry out this analysis as a precursor to the analysis in the
physical case.

3Their Gp does not correspond to our G.
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Figure 3: Numerical solutions for A; as a function of m for p = 500 MeV
and G = 64/A?% in the simplest NJL. model. Shown are solutions neglecting
the effect of A3 and including the effect of As.
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Figure 4: Numerical solutions for A3 as a function of m for p = 500 MeV
and G = 64/A? in the simplest NJL model.
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Figure 5: Numerical solutions for A; as a function of m for p = 400 MeV
using the same approach as [22]. Shown are solutions neglecting the effect of
Ajz and including the effect of As.
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Figure 6: Numerical solutions for A3 as a function of m for p = 400 MeV
using the same approach as [22].
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5 NJL Model motivated by Single Gluon Ex-
change

The fermion interaction which has the structure of single gluon exchange has
the interaction vertex:

A AZ PA AT
Ly = Tu=o" L= —Yu(%) (62)
and:
¢*Di — 3Gg™ S ap (63)
giving the gap equation:
=-2iG / 7 Go (9A)G" (a) 7" (64)
using the equations:
8
A LA 3)\5 assuming \? is antisymmetric (65)

If one multiplies on each side of this equation by 75 and 757, traces over the
Dirac indices and uses the cyclicity of the trace and the relations:

VPP = —47° (66)

MW = =77 = 290 (67)
and then applies all the other machinery exactly as in the last section the
coupled gap equations are obtained:

_G 2 (A1 AL (mp+AA)A;  (mopt AAg)As
S1= ) <€+ T T @ —ee (@ - (6)2)6(>68)
= _i 2 ﬁ ﬁ m p Ay B m p Ay
~ 27T2/ i <6+ T T @ - (@) - (e
(®+AYA; (P +AYA
((er)? = (e=))et  ((e7)? - (6—)2)e‘> (69)
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Notice that they are almost the same as the equations in the last section
except for an overall factor of —% in the second equation.

The gap equations were solved numerically for 4 = 500 MeV and G =
48 /A? for different values of m. The results are shown in Figures (7) and (8).
Also shown for comparison is the solution for A; where Aj has been ignored.

One can see in Figure (8) that Aj is negative and decreases linearly with
m and at m = 150 MeV the magnitude is approximately 9% of A; at m = 0.
In Figure (7) we can see that the inclusion of A in the solution of the gap
equations strongly affects the results for A;. As shown in the last section, if
Aj is neglected A; decreases with increasing mass at m = 150 MeV and is
down about 5% from the m = 0 result. By contrast if A3 is included in the
analysis, A; initially increases with m and then turns over at an m of around
90 MeV. The shift of A; is much smaller than when Aj is neglected reaching
an upward shift of < 0.1% and only down by 0.25% at m = 150 MeV.

The gap equations were solved numerically for 4 = 500 MeV and G =
64/A? for different values of m. The results are shown in Figures (9) and
(10). Also shown for comparison is the solution for A; where Ay has been
ignored.

Again Figure (10) shows that Aj is negative and decreases linearly with
m and at m = 150 MeV the magnitude is approximately 6% of A; at m = 0.
In Figure (9) we can see that in this case A; decreases with increasing m but
decreases less rapidly if Aj is not assumed to be zero. At m = 150 MeV, A,
is ~ 4% less than (Ay),—¢ if Az is neglected and only ~ 2% less if it is not.

Neglecting Az in the solution of the gap equation gives a good approxi-
mation for A; in the NJL model with the structure of single gluon exchange.
The inclusion of A3 leads to non-negligible effects in the mass dependence
of Ay. In the Ny = 2 case or, equivalently, the 25C phase of 3 flavor color
superconductivity, these effects will alter the location of the phase transition
between the color superconducting phase and the normal phase. We can
estimate that the effect on the phase transition will be of the same order or
less than the effect on the A;.

The complete analysis of the gap equations in this NJL model does not
lead to drastic change in magnitudes of the gaps or the phase transitions but
it does illustrate how to obtain the exact solutions in full generality. This is
a significant advance.

This analysis is also useful as a precursor to the analysis in the physical
case.
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Figure 7: Numerical solutions for A; as a function of m for y = 500 MeV and
G = 48/A? in the NJL model with the structure of single gluon exchange.
Shown are solutions neglecting the effect of A3 and including the effect of
As.
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Figure 8: Numerical solutions for A3 as a function of m for ; = 500 MeV and
G = 48/A? in the NJL model with the structure of single gluon exchange.
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Figure 9: Numerical solutions for A; as a function of m for ; = 500 MeV and
G = 64/A? in the NJL model with the structure of single gluon exchange.
Shown are solutions neglecting the effect of A3 and including the effect of
As.
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Figure 10: Numerical solutions for Az as a function of m for y = 500 MeV
and G = 64/A% in the NJL model with the structure of single gluon exchange.
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6 Conclusion

In this paper the completely general quasiparticle propagator for the case
of equally massive quarks is derived. The quasiparticle propagator is then
specialized to the propagator in an NJL model. It is shown that there is
exactly one new condensate, As, in this model.

The quasiparticle propagator was used to numerically solve the gap equa-
tions for the CFL condensate, A, and the new condensate, Az in two NJL
models as a function of the quark mass.

Results for A; and Az in the simplest NJL model were presented as a
function of the quark mass. The results A; were compared with results where
Az has been assumed to be zero. This was done for two different values of the
four fermion coupling constant. The results show that the complete solution
differs significantly from the approximate solution especially at large quark
mass and smaller A;.

Results in the same NJL model were also presented using the same ap-
proach and parameters as that in [22] to determine how much their results
could be affected by neglecting As. The effect is not large but non-neglible
and this analysis shows how to generalize their analysis to the complete case.

Results for A; and Ag in the NJL model with the structure of single gluon
exchange presented as a function of the quark mass. The results A; were
compared with results where Az has been assumed to be zero. This was
again done for two different values of the four fermion coupling constant.
The results show that the complete solution differs significantly from the
approximate solution especially at large quark mass and smaller A;. Even
for small values of m, if A; is small, the m-dependence of A; in the full
analysis differs qualitatively from the approximate analysis.

Solving the color superconducting gap equations for the case of equal mass
quarks is also valuable as a precursor to analyzing the physical case where
the up and down quarks are essentially massless and the strange quark is
massive. The methods used in this research combined with the methods of
[8] can be combined to analyze the physical case where only the strange quark
is given a non-zero mass which is the ultimate goal of this line of research.
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7 Appendix A: Nambu-Gorkov Formalism

In the Nambu-Gorkov(cite?) approach one deals with the eight component
Spinors:

v=( ) v= v (70)
c
with which the action can written concisely as:
I B
19, 9] = E/q: sy, (71)
where: G-t
1 [ IGe ] A~

and A~ = yAty, and G are the free quark (anti-quark) propagators.

The Grassman nature of the fermion fields and the off-diagonal terms in
the action constrain[2, 15] the gap matrix in the massless case to be symmet-
ric under the simultaneous interchange of all internal indices. This means
that the gaps must be antisymmetric (3) in both color and flavor or sym-
metric (6) in both color and flavor and the resulting 9 X 9 gap matrix is
symmetric.

The full propagator is:

+ —CtA- (-
G GEAG ) 73)

S = < —GyATGT G-

8 Appendix B

The Bailin and Love motivated decomposition given in [15] is:

A= Arys+Ayy- /Af’YO’Ys +Aszvoys + A+ Asy- ];3’)/0 + Agy- k+ Agy- if?’s + Ago
(74)

where: .
Ayys + Aoy - kvoys (75)

represents condensation of fermions with the same chirality in the even parity
channel,

Ag+ Agy - ko (76)
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represents condensation of fermions with the same chirality in the odd parity
channel.
Azvoys + Ary - ks (77)

represents condensation of fermions with opposite chirality in the even parity

channel, A
Agy - k+ Agvo (78)

represents condensation of fermions with opposite chirality in the odd parity
channel.
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